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The canonical distributions are chi-square distributions which are derived from 
parent distributions for nonconjugate fluctuating thermodynamic variables. The 
probability distributions are generated by discrete random variables which are 
the number of degrees of freedom and the number of particles. Randomized 
sampling of the total number of degrees of freedom and total number of particles 
gives rise, respectively, to fluctuations in the energy and volume. 

1. I N T R O D U C T I O N  

Statistical distributions describe chance  p h e n o m e n a  such as the throw 
of  a die or  the toss o f  a coin. Al locat ion experiments  are o f  this kind, where,  
for  example,  a certain number  o f  balls are to be distr ibuted a m o n g  a given 
number  o f  cells. Such types o f  experiments  provide  a convenient  way  o f  
deriving quan tum statistics within the f ramework  o f  the grand  canonical  
ensemble,  but  do not  seem to be pert inent  to the cont inuous  distr ibution 
o f  extensive t he rmodynamic  variables in the canonical  ensemble. Bol tzmann 
himself  a lways worked with discont inuous r a n d o m  variables, only to take 
the cont inuous  limit at the end of  the calculation. This is undoub ted ly  the 
reason why his me thodo logy  could be used by Planck in the derivation o f  
his radiat ion formula.  But the quest ion still remains:  What  is responsible 
for the fluctuations in the extensive t he rmodynamic  variables, such as the 
energy and  volume,  which must  be admit ted even in the microcanonica l  
ensemble in order  to obtain  a probabi l i ty  distr ibution? 

The term "dis t r ibut ions"  is used in a peculiar  sense in physics since 
they are not  probabi l i ty  distributions at all, but  rather expressions for the 
average number  o f  particles as functions o f  temperature  at a given energy 

1Universit~ degli Studi, Camerino 02032 (MC), Italy. 
2Department of Applied Mathematics, University of Hull, Hull HU6 7RX, United Kingdom. 

85 
0020-7748/90/0100-0085506.00/0 �9 1990 Plenum Publishing Corporation 



86 Lavenda and Dunning-Davies 

or frequency. They can, however, be derived from proper probability distri- 
butions by equating the derivative of  the entropy of the probability distribu- 
tion with the second law. The entropy of the probability distribution is 
determined by casting the probability distribution as a Gaussian law of  
error (Lavenda, 1988). Classical or Maxwell-Boltzmann statistics arises, in 
this context, as a limiting distribution to which the quantum distributions 
tend as the ratio of the average number of particles to the number of  cells 
tends to zero. The classical probability distributions always appear as error 
laws which identify the average value as the most probable value. In this 
paper we will show that such continuous probability densities are generated 
by discrete random events that are governed by the bi- or multinomial 
distributions in an somewhat analogous way to that in which Bose-Einstein 
and Fermi-Dirac statistics are derived from the negative binomial and 
binomial distributions (Lavenda, 1988). 

But the relation appears to be more subtle, since the bi- or multinomial 
distributions are not the probability distributions for thermodynamic vari- 
ables. The multinomial distributions for the occupation numbers are conver- 
ted into independent Poisson distributions by randomized sampling. The 
presence of  scale parameters, proportional to intensive thermodynamic 
variables, in these distributions indicates that there exist other random 
variables for which these parameters are the true scale parameters. The 
density of  the cumulative distribution function is the probability density 
of  the extensive thermodynamic variables. This is entirely distinct from 
the uncertainty relations between conjugate thermodynamic variables 
(Lavenda, 1987); random occupation numbers give rise to continuous ran- 
dom thermodynamic variables with probability densities all having the same 
form when the constraint that their sum be fixed is waived. That the various 
probability densities are all chi-square distributions seems to imply that the 
law of  large numbers is actually behind the success of thermodynamics. 

All this can be distilled out of the cryptic Chapter II of  Gibbs' (1902) 
Elementary Principles in Statistical Mechanics. Here Gibbs actually derives 
the canonical distribution in a much more rigorous way than the heuristic 
arguments he offers in Chapter IV. Although he notes the analogy with the 
theory of  errors and that the probability distribution depends only on the 
number of  degrees of  freedom, "being in other respects independent of its 
dynamical nature," Gibbs stops short of  asking what are the random 
variables for the probability distribution that he has derived. 

2. TEMPERATURE ENSEMBLES 

Consider a phase space with 2m degrees of freedom x l , . . . ,  x2m without 
giving them any mechanical interpretation. A system can be represented by 
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a point with coordinates xl, x2,. �9 X2m in this phase space. The volume 
element in the phase space is (Khinchin, 1949) 

dO//'(; m)= d x , . . ,  dx2m = O ( E ;  m -  1) dE (1) 

where O(E; m - 1) is the surface "area;' of the volume ~(E;  m), viz. (Gibbs, 
1902) 

ol/" E m- I d m 
O ( E ; m - 1 ) = ~ - = A  F - - ~  (2) 

and A is a numerical coefficient that depends upon the nature of the physical 
system under consideration, f /(E;  m - l )  is commonly referred to as the 
"structure function" and it contains all the relevant thermodynamic informa- 
tion about the system (Khinchin, 1949). 

Suppose that the phase space is divided into two parts, one with volume 

~ l ( E ~ ; k ) = f . . . f d X l . . . d X 2 k = A  kE--~ k! (3) 

where the integration extends over all phases for which the energy is not 
greater than El, and another with volume 

o l / . 2 ( E 2 ; m _ k ) = I  . . . f  dX2k+l. . .dx2m___Am-k E'~ -k ( m - k ) !  (4) 

The integration in (4) extends over all phases for which the energy is not 
superior to E2. The total energy of the composite system is 

E = E 1 + E 2 (5) 

The energies E~ and E2 are not assumed to be functions of the instantaneous 
values of the degrees of freedom, and hence are not random quantities; 
rather, they are related to the expected number of degrees of freedom in 
each of the subspaces. 

We cannot be exactly sure that there are 2k degrees of freedom in 
subsystem "1" for there is no way of controlling precisely the microscopic 
coordinates. Rather, we must ask for the probability that out of the entire 
phase space of 2m degrees of freedom one of the two subspaces contains 
exactly 2k degrees of freedom. This is given by the binomial distribution 

p(k[m)=[m'~pkqm_k_, , ~ ; k ) ~ 2 ( E - E , ;  m - k )  (6) 
\ kJ ~(E;  m) 

where the a priori probability p = E1/E and q = 1 - p .  On the strength of 
N e w t o n ' s  b inomia l  theorem,  the c o m p o s i t i o n  rule for the phase space  
volume elements is easily seen to be 

~(E)  = ~ ~,(E, ; k)~2(E - E, ; m - k) (7) 
k=0 
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At first sight, (7) may appear to be an unusual composition law for the 
phase volumes. Yet, it may be remembered that it is the degrees of  freedom 
of  the subspaces and not the energies which are the random variables. When 
we transfer from degrees of  freedom to the energies of the subsystems as 
the relevant random variables, the surface areas fI1 and fI2 will be seen to 
obey the usual composition law [cf. (16) below]. 

Suppose now that we release the constraint that the total number of  
degrees of  freedom 2m be fixed and replace it by a random number having 
the Poisson distribution 

(/3E)" e_t~ e (8) P(m]/3) = m! 

The parameter/3 is a physical constant which determines how many degrees 
of  freedom will be expected in each energy interval. In mathematical 
statistics, the replacement of a fixed number by a random number is known 
as "randomized sampling." 

Then "total probability" is the product of  binomial distribution (6) 
and the Poisson distribution (8) summed over all m---k (Feller, 1968) 

o o  

P(kI ]3 )=  Y~ P ( k l m ) P ( m ] f l ) - ( ~ E 1 ) k e  -t3G (9) 
~=k k! 

Under randomized sampling, the random variable k becomes an indepen- 
dent Poisson variable with mean value fiE1. The quantity/3 appears as a 
scale parameter but it is not a scale parameter in the distribution (9). This 
seems to indicate that there is another random variable for which/3 is the 
scale parameter. 

Suppose we are able to increase the phase volume ~ continuously, by 
raising the energy E~, until it contains exactly 2k degrees of freedom. This 
implies that the energy is the required random variable. We designate El 
as that energy for which the volume ~ contains exactly 2k degrees of  
freedom. Then the probability that the volume ~ ( E ~ )  will contain less than 
2k degrees of freedom is 

k-1 (/3E1)" 
Pr(/~, > El) = Y - -  e - ~ '  (10) 

,=o n! 

Thus, Pr(/~ --< E~) = 1 - Pr(E] >/~1) will coincide with the cumulative distri- 
bution function F(E~]/3) (Blackwell and Girshick, 1954). This is precisely 
expression (68) in Gibbs (1902). Then 

f~(El I/3) - OF _ (/3El)k-l~ e_tS G (11) 
OE1 F(k) 
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is the probability density which, as Gibbs notes, depends upon the number 
of degrees of freedom and is independent of the particular nature of the 
physical system. Actually, Gibbs integrates (11) to get the cumulative 
distribution function, for which he assumes that there exists a value of the 
energy such that F = �89 He then concludes that the probability of the phase 
falling between these limits is greater than the probability of falling in any 
other limits enclosing an equal.extension-in-phase. It happens, as he notes, 
to be equal to the probability of the phase falling outside these limits. 

The chi-square distribution possesses the important "reproductive" 
property that the sum of two independent chi-square variates with 2k and 
21 degrees of freedom is also a chi-square variate with 2k + 21 = 2m degrees 
of freedom, viz., 

f(EI/3) /3(/3E)"-1 e - ~  (12) 
r(m) 

where E is the sum of the energies. This property is responsible for statistical 
equilibrium and the fundamental composition law for the structure function, 
equation (16). 

From a statistical inference point of view (Lavenda and Scherer, 1988), 
the energies E~ can be interpreted as sample data which can be used to 
estimate the conjugate intensive parameter /3. The maximum likelihood 
estimate is 

ft. = rn/ /3 (13) 

where /7 coincides with the mean of the chi-square distribution (12). A 
thermodynamic argument can be used to establish that fl is the inverse 
temperature in energy units where Boltzmann's constant is equal to unity. 
Equation (13) may then be appreciated as the law of equipartition for a 
system with 2m degrees of freedom. According to the chi-square density, 
(12), it represents the expected value of the energy, while according to 
randomized sampling hypothesis, characterized by the fact the random 
number m has a Poisson distribution, it represents half the mean number 
of degrees of freedom. This is a fundamental complementarity relation 
whereby the relaxation of the constraint that the total number of degrees 
of freedom is a constant induces fluctuations in the energy. In the presence 
of the constraint, the energy appears as a parameter determining the mean 
number of degrees of freedom; the number of degrees of freedom is the 
random variable. 

The chi-square distribution (12) can be written in the canonical form 

f~(E) -~e 
f ( E  I/3) e (14) 
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where ~ is the structure function (2) with 2m degrees of  freedom. The 
norming constant or "partition function" is 

~ ( ~ )  = ( A / E ) "  (15) 

Consequently, the ratio Ft/Y, and hence the probability density (14), is 
independent of  the particular nature of the physical system (i.e., independent 
of  the numerical constant A), while it depends on the number of  degrees 
of  freedom of  the system. 

The probability density (14) can be written as a ratio of products of  
structures functions by dividing our system into a small subsystem, which 
we label as "1"  with 2m1 degrees of freedom, the a larger (reservoir) 
subsystem, labeled by "2"  with 2mz degrees of freedom. The composite 
system will be index free and has 2m~ +2m2 = 2m degrees of  freedom. The 
random quantity/~1 is governed by the probability density (Khinchin, 1949) 

~ ~ l ( E 1 ;  m I - -  1)D.2(E - El;  m - ml - 1) 
I ) (E ;  m - l )  (16) 

since E1 + E2 = E = const. Expanding f~2 in a Taylor series about the total 
energy E of  the system, using 0 In l't2/OE = fl and f~2(E) / f t (E)  ~- ~-~(f l )  
(Blanc-Lapierre and Tortat, 1954), we obtain the canonical expression (14) 
for the probability density. 

However, there is a flaw in the demonstration, because even if the 
successive terms in the Taylor series of I ) 2 ( E - E I )  about E are small 
compared with the first-order term, a nonnegligible error is introduced when 
the first two terms are used to approximate an exponential. This can be 
remedied by observing that (16) is the beta probability density 

xml-l(1 __X)m-m, -1 
f , ( x l 3 )  = (17) 

B(ml ,  m - ml) 

where the beta function is B(ml  ; m - ml) = F(ml)F(rn - rnO/F(m) and x = 
E~/(E~+E2). It is well known (Zellner, 1971) that the beta probability 
density can be derived from a product of  chi-square densities (12) for the 
random variables/~, and/~2 by a change of  variables. Allowing the number 
of degrees of freedom of the reservoir, or subsystem "2",  to increase without 
limit, will affect a transformation of the beta into the chi-square distribution 
for the random energy variable /~1- This is tantamount to letting m ~ co 
with m~ kept small and fixed. In this limit, 

( lim 1 -  = e -~e' (18) 
m --> o o  

and consequently the beta distribution goes over into the chi-square distribu- 
tion for the random variable El. 
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3. P R E S S U R E  E N S E M B L E S  

The type of complementarity between nonconjugate thermodynamic 
variables also appears between the number of particles and the partial 
volumes which they occupy. The probability of finding a molecule in a 
partial volume Vj of total volume V is 

pj =-~ (19) 

Dividing the entire volume into r subvolumes, the probability of finding n~ 
molecules in V~, n2 molecules in V2 , . . . ,  is given by the multinomial 
distribution 

P ( n , ,  n 2 , . . .  , nrln) = 

subject to the condition that 

be a constant. 

n~ 
n I n 2 

h i ! n 2 ! . .  " n r ! P l  P2 "" . p'/r (20) 

Y nj = n (21) 
j = l  

Now suppose that we relax the condition that (21) be constant. If the 
particles are well mixed, their distribution will be Poisson. Let h be the 
expected number of particles in a unit volume. The distribution of the total 
number of particles n is given by 

P( n ] h ) = (a V)" e-a v (22) 
n! 

The "total probability" is the product of the multinomial distribution (20) 
and the Poisson distribution (22) summed over all n (Feller, 1968) 

P ( n , ,  n2,  . . . , n~_l[a)= Y. P ( n l ,  n 2 ,  . . . , n r [ n ) P ( n  IX) 
n 

=rfi, ()t Vj)"J e_XV j (23) 
j=l nj! 

which again shows that randomized sampling from a multinomial 
distribution where the total number is a Poisson random variable produces 
i n d e p e n d e n t  P o i s s o n  var iables .  

In the same way that fl is not the scale parameter for the total number 
of degrees of freedom, a is not the scale parameter for the total number of 
particles. We now show that by varying the volume V so that for some 
value we have exactly n particles located in it, the size of this volume is 
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the required random variable. Constructing the cumulative distribution 
function as above, we find the density to be given by 

(AV)"-1;t - , v  
f , ( V I A ) -  e (24) 

r(n) 

and analogous expressions for each of the partial volumes. Thus, A is a 
scale parameter in the distribution of V which is a chi-square distribution 
with 2n degrees of freedom. 

The parameter A can estimated from observations made on the volume. 
The maximum likelihood estimate is obtained from the likelihood equation 

a l n f ,  n 
- -  - v = o  ( 2 5 )  

aA A 

We now show that the most likely value of  V, determined from the likelihood 
equation (25), coincides with the average value V. The chi-square density 
(24) can be written in the canonical form 

~(V;  n) -~v 
f . ( V l A )  - -  e (26) ~(~) 

where F~( V; n ) =  V ' - I / F ( n )  is the "configurational" phase space structure 
function whose integral is 

V" 
~V( V; n) = - -  (27) 

n! 

The numerator of  (27) results from integrating over all the 3n positional 
coordinates and it is what Gibbs (1902) referred to as extension-in- 
configuration. The denominator had to be introduced in an ad hoe manner, 
prior to the advent of  quantum theory, in order that the entropy turn out 
to be extensive. Although we shall refer to (27) as the "configurationar '  
phase space volume, in order to distinguish it from the energy phase space 
volume (3), we will not require any mechanical interpretation of the ~ 

The moment generating function in (26) is 

Y(A ) = A -" (28) 

which, upon taking the logarithm and differentiating, gives 

0 1 n ~  n 
- -  - ~7 ( 2 9 )  

0A A 

A comparison of  (29) with the likelihood equation (25) shows that the most 
probable value of the volume, determined from that equation, coincides 
with the average value, determined from the moment generating function. 
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The equation of state (29) allows for a complementary interpretation. In 
terms of the chi-square density (24), we would interpret it as the expression 
for the average volume, while in terms of the Poisson distribution (22), it 
gives the expected number of  particles in terms of the volume, which is a 
mere parameter. 

In order to attribute a thermodynamic significance to the scale param- 
eter h, we have to assume that the partition function (28) is also a function 
of the scale parameter fl, the inverse temperature. Otherwise, we would 
come out with a meaningless relation of converting work into heat and vice 
versa without taking into account changes in the internal energy of the 
system. This points to the fact that there is a definite hierarchy in securing 
different types of equilibria, with the highest priority given to thermal 
equilibrium where all subsystems arrive at a common value of/3. 

If each particle has 2m degrees of freedom and there are n particles, 
the energy phase space volume 

E nm 

~ ( E ;  mn)=A m ~ -  (30) 
(ran)! 

has 2ran degrees of freedom, where E is a sum of  n terms. The total element 
of  volume of  the phase space is 

d~(E, V)= d~V(E; ran). d~ n) 

=f i (E ,  V; n) dEdV 
AmnEm,,-1 Vn-1 

= dE dV (31) 
F(mn)F(n) 

which can be taken as the composition law of the phase space volumes. 
The internal energy is 

( a l n ~  
- k - - ~ ]  ~ = U (32) 

where 

In ~e = n In (33) 

and the internal energy U--  n/~ is n times the average energy per particle. 
The moment equation (29) can now be written as 

d In ~ +  Udfl = - V d A  (34) 

Adding the differential of  flU + A 17" to both sides of (34), we get 

d{ln ~ +  f l U +  AIT"} = fl ~ dU + A-- dV~ (35) 
[ 3 J 
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With the identification h = ~/3, where ~ is the pressure, the scale 
parameter/3 multiplies the difference between the increment in the internal 
energy and the work done by the system. According to the first law, this is 
the "amount"  of heat 8Q received by the system during an elementary 
transition between neighboring equilibrium states, while according to the 
second law, the product/3 8Q is equal to a total differential, given by the 
left side of (35). The integrating factor fl, for the quantity of heat 8Q, in 
energy units where Boltzmann's constant is unity, is the inverse of the 
absolute temperature. 

The expression for the first moment, (29), is simply the equation of 
state for an ideal gas, since h =/3~. And just like the law of equipartition 
of energy, (13), it, too, admits a dual interpretation, depending on whether 
the volume is a random variable and the particle number a parameter or 
vice versa. It therefore appears that this complementary is at the root of all 
constitutive relations relating nonconjugate thermodynamic variables. 

Comparing (35) with the Gibbs equation identifies the logarithm of 
the partition function as 

In ~(/3,/3~, n) = - / 3 ( ~ +  ~17") = - f i g  (36) 

where ~ and ~ are the Helmholtz and Gibbs free energies, respectively. 
The commonly accepted expression for the partition function is 

~ e ~ f  = ~.I (37) 

where we have used (29) and Stirling's approximation n!=n"e-". 
Ordinarily, the n! in the denominator of (37) is written in by hand to take 
into account the indistinguishability of the particles. In other words, in 
writing the partition function as a product of single-particle partition func- 
tions, it is claimed that the number of configurations have been overcounted 
n ! times. But expressing the partition function as a product does not mean 
that we are considering only one out of the n! permutations. Rather, the 
n! enters naturally into the expression for the configurational phase space 
volume (27) and not into the expression for the partition function. 

For a subsystem in contact with both a thermal and pressure reservoir, 
the probability to occupy a state of energy E and volume V is 

f~(e, V[/3, A) =•(E,  V; n)e ~-~e- 'w  (38) 

The product/3~d is the Massieu transform of the entropy with respect to 
the internal energy U and the average volume V, viz. 

-/3~=Se[/3,~@,nl=~(U, R n ) -  -\=-~./u, f," (39) 
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Introducing this expression into (38) and taking the logarithm casts the 
probability density in the form of a Gaussian law of error (Lavenda, 1988) 

lnf ,  = -/3(E - U ) - A ( V -  17)- 6e(U, V, n)+s(E, V, n) (40) 

where the stochastic entropy has been defined as 

s(E, V, n) =ln I~(E, V; n) (41) 

in accordance with Boltzmann's principle. 
The Gaussian error law (40) gives the probability that a measurement 

will give the joint values E and V whose true values are known to be U 
and 17, respectively. Since the probability density is a maximum when the 
average and most probable values coincide, the entropy must be the same 
function of the average values that the stochastic entropy is of the random 
variables. Hence, 

5~( U,V,n)=n In[ (A-~nU)m-~] + n(m + 1) (42) 

Expression (42) has the form of the entropy for an ideal monatomic gas, 
where A = 27rM/h 2, with M the mass and h Planck's constant, with 2m = 3 
degrees of freedom. In deriving (42), we have assumed that n is sufficiently 
large so as to apply Stirling's approximation. In this approximation, 

5e(U, V, n )= ln  ~(U, 17"; n) (43) 

which means that there is a logarithmic equivalence between total phase 
volume (30) and total surface area (31). Since the former is proportional 
to the number of states below a given energy and volume, these states will 
be concentrated in a thin layer near the surface. This is the justification for 
Ehrenfest's use of "surface ensembles" (Ehrenfest and Ehrenfest, 1959). 

According to Greene and Callen (1959), the high dimensionality of 
the phase spaces is "responsible for the fact that there is a single general 
thermodynamics, rather than a 'microcanonical thermodynamics' and a 
separate 'canonical thermodynamics'." For systems with a large number of 
degrees of freedom, the structure function actually specifies the entropy 
function when the random variables are replaced by their average, or most 
probable, values. This explains why the structure function completely deter- 
mines the structure of the corresponding physical system (Khinchin, 1949). 

4. PARTICLE DISTRIBUTIONS 

Suppose we wish to retain the fact that it is the particles themselves 
which give rise to the fluctuations. We have assumed that since the particles 
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are well mixed, their distribution is given by the Poisson distributions (8), 
which may be written generically as 

P(n I H) = - -  e -~ (44) 
n! 

Writing it in terms of a Gaussian law of error for which the mean value is 
also the most probable, we have 

OS 
P ( n [ ~ ) = e x p { - ( n - ~ ) ( - ~ n ) v - S ( ~ ) + s ( n ) ]  (45) 

where the entropy is given by s = ri - a In ~ + const. This expression for the 
entropy is not thermodynamically admissible because it lacks the property 
of extensivity (Lavenda, 1988). It can be made extensive by writing 

S(~) = ~ [ln(@_) + 1] (46) 

which leaves Gauss' principle invariant, since all terms involving the exten- 
sive quantity C cancel out. We will subsequently identify C as the number 
of "cells" in a given particle energy range Ae. 

On the strength of the second law, we equate the derivative of the 
expression of the statistical entropy (46) with the corresponding thermody- 
namic expression to obtain 

v = l n  = f l ( e - / ~ )  (47) 

or, upon rearranging, 

= C(e)e  -t3(~-") (48) 

where e is the energy of the individual particles, or, in discrete form, the 
energy of a given cell, and/~ is the chemical potential. Applying the second 
law in the form (47) means that the total energy is no longer an independent 
variable, for it depends on the average number of particles in the various 
cells. 

Instead of the Massieu transform (39), the relevant thermodynamic 
potential is given by 

( O S ) ~  (49) f lPV = S[fl, V, fllx ] = S( ~, V) - ~-~ v 

where P is the "monochromatic" pressure or the pressure in the energy 
interval Ae. The volume V plays the role of the  mute extensive parameter 
in the Massieu transform (49), just as the number of particles n plays the 
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same role in (39). In order not to confuse n, the total number of particles, 
with the fluctuating variable, we will denote it by N. 

The total number of  particles is obtained by summing (48) over regions 
of  the phase volume or by requiring Ae to be small enough to allow 
summations over the different regions to be replaced by integration over e. 
We then obtain 

N = C(e )e  -~(~-~) de (50) 
0 

which must be compatible with the expression we get on solving (33) for 
N, viz., 

N = ( f l ) m V e  ~ (51) 

where we have used (36) and ~ = ~N. From this equivalence, it is seen that 
the integral is a gamma integral and 

r n - - I  

C(e)  = A  m e F - ~  V (52) 

It is readily seen from the specific case of a monatomic gas with 2m- -3  
degrees of  freedom and A = 2~ 'M/h  2 that C(e)Ae  is the number of states 
of  one particle whose energies lie between e and e + Ae. Introducing (48) 
into the entropy expression (46) and integrating over all e, we obtain the 
integrated entropy 

Y=,U+NIn[(A--I ZI+N (53) 
L kf l ]  N J  

which is identical with (42) when the equipartition of energy (13) is 
introduced. 

5. GENERALIZED STEFAN LAW 

The law of equipartition of energy (13) can be combined with the 
equation of  state of an ideal gas (29) to give a generalization of  Stefan's 
law that was first proposed by Lord Rayleigh (1902) in his discussion on 
the pressure of  vibrations. Eliminating fl between (13) and (29) gives 

= u / m  (54) 

where the energy density u = U/  V. It is quite remarkable that the pressure- 
energy density relation (54) is valid whether or not equipartition of  energy 
and the equation of  state of  an ideal gas hold. 
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The G i b b s - D u h e m  relation for a system with a constant, or vanishing, 
chemical potential can be written as 

d ~  5 e u +  
- ( 5 5 )  

d T -  V T 

Introducing (54) and integrating gives 

U OC. T m + l  (56) 

which is the generalization of  Stefan's law that was first proposed by Lord 
Rayleigh (1902). For Stefan's law u o c T  4, one has r n = 3 ,  while for a 
monatomic  gas, ~oc~u, so that m =3 and Stefan's law is u oc T 5/2. 

We now show that the generalized Stefan law attributes the same 
physical significance to 2m as we have previously deduced from the chi- 
square distribution. In a quasistatic change, the heat added to the system 
in an infinitesimal transition to a neighboring equilibrium state is given by 
the first law 

dQ = d (uV)  + ~ d V  (57) 

Considering a quasistatistical adiabatic change and introducing the general- 
ized equation of state (54), we have 

( ')  1+ m u d V +  V d u = O  (58) 

which integrates to give 

1.,IV l + l / m  = const (59) 

Introducing the generalized Stefan law (56) gives 

TV 1/m = const (60) 

For an ideal gas we have 

C d T  d V  0 (61) vT+ (cp- cv)T= 
in a quasistatic adiabatic change. Integrating (61), we obtain 

T W ' -  1 = const (62) 

where y = Cp/Cv ,  the ratio of  the specific heat at constant pressure to that 
at constant volume, and Cv was assumed to be independent of  the tem- 
perature. Compar ing (60) and (62), we conclude that 

1 
y = 1 + - -  (63) 

m 
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Now according to kinetic theory, 3' is given by (Boltzmann, 1964) 

r/+2 
7 = (64) 

~7 

where r/is the number of degrees of freedom of the molecule. A comparison 
of (63) and (64) shows that the numerical quantity appearing in the general- 
ized Stefan law (56) is precisely m = lr/, or one-half the number of degrees 
of freedom of the elementary constituents of the system. We have arrived 
at the same physical interpretation based on an entirely different approach 
leading to the derivation of the chi-square distribution governing the con- 
tinuous distribution in the energy, (12). 

ACKNOWLEDGMENTS 

This work was supported in part by the Ministry of Public Education 
(MPI) and the National Research Council (CNR). 

REFERENCES 

Blackwell, D., and Girshick, M. A (1954). Theory of Games and Statistical Decisions, Wiley, 
New York, p. 319. 

Blanc-Lapierre, A., and Tortat, A. (1956). In Proceedings of the Third Berkeley Symposium on 
Mathematical Statistics and Probability, Vol. III, University of California Press, Berkeley, 
pp. 145-170. 

Boltzmann, L. (1964). Lectures on Gas Theory (S. G. Brush, transl.), University of California 
Press, Berkeley, Part II, w 43ff. 

Ehrenfest, P., and Ehrenfest, T. (1959). The Conceptual Foundations of  the Statistical Approach 
in Mechanics (M. J. Moravcsik, transl.), Cornell University Press, Ithaca, New York. 

Feller, W. (1968). An Introduction to Probability Theory & Its Applications, Vol. I, 3rd ed., 
Wiley, New York, p. 116. 

Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics, Yale University Press, New 
Haven, Connecticut. 

Greene, R. F., and Callen, H. B. (1951). Physical Review, 83, 1231. 
Khinchin, A. I. (1949). Mathematical Foundations of  Statistical Mechanics (G. Gamow, transl.), 

Dover, New York. 
Lavenda, B. H. (1987). International Journal of Theoretical Physics, 26, 1069-1084. 
Lavenda, B. H. (1988). International Journal of Theoretical Physics, 27, 1371-1381. 
Lavenda, B. H., and Scherer, C. (1988). Rivista del Nuovo Cimento 11(6). 
Lord Rayleigh (1902). Philosophical Magazine 3, 338-346. 
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York, 

pp. 373-376. 


